General Dynamical Equations for Free Particles and Their Galilean Invariance
نویسنده
چکیده
Dynamical equations describing evolution of state functions in space-time of a given metric are important components of physical theories of particles. A method based on a group of the metric is used to obtain an infinite set of general dynamical equations for a scalar and analytical function representing free and spinless particles. It is shown that this set of equations is the same for any group of the metric that consists of an invariant Abelian subgroup of translations in time and space. For Galilean space-time, such group is the extended Galilei group. Using this group, it is proved that the infinite set of equations has only one subset of Galilean invariant dynamical equations, and that the equations of this subset are Schrödinger-like equations.
منابع مشابه
Physical theories in Galilean space-time and the origin of Schrödinger-like equations
A method to develop physical theories of free particles in spacetime with the Galilean metric is presented. The method is based on a Principle of Analyticity and a Principle of Relativity, and uses the Galilei group of the metric. The first principle requires that state functions describing the particles are analytic and the second principle demands that dynamical equations for these functions ...
متن کاملInteger Lattice Gases
We generalize the hydrodynamic lattice gas model to include arbitrary numbers of particles moving in each lattice direction. For this generalization we derive the equilibrium distribution function and the hydrodynamic equations, including the equation of state and the prefactor of the inertial term that arises from the breaking of galilean invariance in these models. We show that this prefactor...
متن کاملInteger Lattice
We generalize the hydrodynamic lattice gas model to include arbitrary numbers of particles moving in each lattice direction. For this generalization we derive the equilibrium distribution function and the hydrodynamic equations, including the equation of state and the prefactor of the inertial term that arises from the breaking of galilean invariance in these models. We show that this prefactor...
متن کاملConformal Galilean-type algebras, massless particles and gravitation
After defining conformal Galilean-type algebras for arbitrary dynamical exponent z we consider the particular cases of the conformal Galilei algebra (CGA) and the Schrödinger Lie algebra (sch). Galilei massless particles moving with arbitrary, finite velocity are introduced i) in d = 2 as a realization of the centrally extended CGA in 6 dimensional phase space, ii) in arbitrary spatial dimensio...
متن کاملGalilean Exotic Planar Supersymmetries and Nonrelativistic Supersymmetric Wave Equations
We describe the general class of N -extended D = (2 + 1) Galilean supersymmetries obtained, respectively, from the N -extended D = 3 Poincaré superalgebras with maximal sets of central charges. We confirm the consistency of supersymmetry with the presence of the ‘exotic’ second central charge θ. We show further how to introduce a N = 2 Galilean superfield equation describing nonrelativistic spi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008